The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on population health and wellbeing. Biomedical informatics is central to COVID-19 research efforts and for the delivery of healthcare for COVID-19 patients. Critical to this effort is the participation of informaticians who typically work on other basic science or clinical problems. The goal of this editorial is to highlight some examples of COVID-19 research areas that could benefit from informatics expertise. Each research idea summarizes the COVID-19 application area, followed by an informatics methodology, approach, or technology that could make a contribution. It is our hope that this piece will motivate and make it easy for some informaticians to adopt COVID-19 research projects.
极光pn安卓版
极光pn安卓版
We are excited to announce that our Aims & Scope has undergone some changes, incorporating an encouragement of submissions pertaining to Artificial Intelligence, Machine Learning, and Visual Analytics, and expanding the data types we consider, to include imaging, electronic health records, biobanks, environmental data, social and behavioral data, wearable devices, and social media data. Please click here to check out the new Aims & Scope and types of submissions that we readily encourage you to submit.
极光pn安卓版
Our new thematic series, edited by Jason Moore and Marylyn Ritchie, seeks manuscripts on the topic of machine learning. We are interested in both original research and review papers, especially those that address new and novel machine learning methods and their application to biological and biomedical big data. The series is open, and you can find out more about it (including submission instructions), here.
极光pn安卓版
We are happy to announce that our Editors-in-Chief, Jason H. Moore and Marylyn D. Ritchie, have recently launched a podcast! The Biomedical Informatics Roundtable Podcast aims to bring you discussion of hot topics, recent papers, news, conferences, open data, open-source software, and advice for trainees as well as interviews and spotlights biomedical informatics colleagues from around the world. Please check out Dr Moore and Dr Ritchie’s podcast, here!
极光pn安卓版
- Recent
- Most accessed
-
国际在线_读懂国际 点赞中国 - CRI:国际在线(www.cri.cn)是由中央广播电视总台主办的中央重点新闻网站,通过44种语言(不含广客闽潮4种方言)对全球进行传播,是中国使用语种最多、传播地域最广、影响人群最大的多应用、多终端网站集群。 国际在线依托中央广播电视总台广泛的资讯渠道和媒体资源,在全球拥有40多个驻外记者站,与许多 ...
-
Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology
-
极光pn安卓版
-
Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator
-
Application of network pharmacology and molecular docking to elucidate the potential mechanism of Eucommia ulmoides-Radix Achyranthis Bidentatae against osteoarthritis
Most recent articles RSS
View all articles
-
Using graph theory to analyze biological networks
-
A survey of visualization tools for biological network analysis
-
云墙netpas
-
Unraveling genomic variation from next generation sequencing data
-
Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends
Most accessed articles RSS
View all articles
极光pn安卓版
Dr Jason Moore, University of Pennsylvania, USA
Dr Marylyn Ritchie, University of Pennsylvania, USA
极光pn安卓版
BioData Mining is an open access, open peer-reviewed, informatics journal encompassing research on all aspects of Artificial Intelligence (AI), Machine Learning, and Visual Analytics, applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, genomic, metabolomic data and/or electronic health records, social determinants of health, and environmental exposure data. Please see here for more information on data types and topical areas.
极光pn安卓版
Your browser needs to have JavaScript enabled to view this timeline
Trezvuy - Fotolia
Have an idea for a new thematic series?
Make a suggestion here
极光pn安卓版
Dr Jason Moore is the Edward Rose Professor of Informatics, Professor of Biostatistics and Epidemiology, and Professor of Genetics at the Perelman School of Medicine of the University of Pennsylvania. He serves as the first permanent Director of the Institute for Biomedical Informatics and founding Director of the Division of Informatics in the Department of Biostatistics and Epidemiology. He also serves as Senior Associate Dean for Informatics. His work has been communicated in more than 400 scientific publications and he serves as PI on several NIH R01 grants. He has been recognized as a national leader in informatics through election as a Fellow of the American Association for the Advancement of Sciences (AAAS) and as a Kavli Fellow of the National Academy of Sciences (NAS). He was recently elected a Fellow of the American College of Medical Informatics (ACMI).
Marylyn D. Ritchie, PhD is a Professor in Genetics, Director of the Center for Translational Bioinformatics, and Associate Director for Bioinformatics in the Institute for Biomedical Informatics at the University of Pennsylvania School of Medicine. Dr. Ritchie is a computational geneticist and biomedical informatician with a focus on detecting disease-susceptibility genes associated with common, complex human disease and integrating electronic health records with genomics. She has expertise in developing novel bioinformatics tools for complex analysis of big data in genetics, genomics, and clinical databases, in particular in the area of Pharmacogenomics. Some of her methods include Multifactor Dimensionality Reduction (MDR), the Analysis Tool for Heritable and Environmental Network Associations (ATHENA), and the Biosoftware suite for annotating/ filtering variants and genomic regions as well as building models of biological relevance for gene-gene interactions and rare-variant burden/dispersion tests. Dr. Ritchie has over 15 years of experience in the analysis of complex data and has authored over 300 publications (H-index 76). She is one of Thomas Reuters Most Highly Cited Researchers for 2014. Dr. Ritchie has extensive experience in leading large collaborative efforts; has been a part of national networks using electronic health records and genomics data; has excellent organizational and leadership skills. Dr. Ritchie is well suited to be a collaborator on this project.
Advertisement
- Editorial Board
- Instructions for Editors
- Sign up for article alerts and news from this journal
Follow
Annual Journal Metrics
-
Speed
43 days to first decision for reviewed manuscripts only
27 days to first decision for all manuscripts
126 days from submission to acceptance
22 days from acceptance to publication
Citation Impact
2.672 - 2-year Impact Factor
2.176 - 5-year Impact Factor
1.195 - Source Normalized Impact per Paper (SNIP)
1.004 - 云墙netpas
Usage
155,529 Downloads
151 Altmetric mentions -
More about our metrics
Advertisement